AD-A030 b6

SEC: ORDER CHARACTERIZATIONS OF PSEUDOCONVEX FUNCTIONS

t —
| ALresiion 1

€1
-

' A DT TS WS M s aw w“.j'
: TR
{ 7 ¥ el
IR
' pba

ST CTHATY EODES

Waits Sactins n/(/

Bl Soctiss 1] ; by
1)

Mordecai Avriel
and

{
Siegfried Schaible?)

-
Technical Report T76-12

June 1976

,/’

Department of Operaticns Research
Stanford University
Stanford, California

DDC
@FERIT)

i

0CT 13 1976 |

'CE'“JISDU U &



B

SECOND ORDER CHARACTERIZATION: OF PSEUDOCONVEX FUNCTIONS

i
Alivimic o, g2 kg s

by
. . .1)
Mordecai Avriel
Meoa o DNATY CODES 2)
SEFBIAL T Siegfried Schaible

}
§

—

-
Technical Report T6-12

June 1976

d
Department of Operations Research
Stanford University D D C

Stanford, California @qujgm
D< 0cT 18 1976 m!

i

ISyt

D

1)
2)

Technion-Israel Institute of Technology, Haifa, Israel.

Industrieseminar, Universitat Koln, Koln, West Germany. Research of
this author was partially supported by Deutsche Forschungsgemeinschaft,
West Germany.

Research and reproduction of this report were parti§liy supported by the
Office of Naval Resegrch Contract NOOO1lk-75-C-0267; National Science
Foundation Grant MCS71-03341 AOL; and Energy Research and Development
Administration Contract £(0Ok-3)-326 PA #18.

Reproduction in whole or in part is permitted for any purposes of the
United States Governmeni. This document has been approved for public
release and sale; its distribution is unlimited.




1. Introduction

Convexity plays a central role in the analysis of mathematical
programming problems. Numerous generalizations of convex functions have
been derived which proved to be useful for extending optimality conditions,
previously restricted to convex programs, to larger classes of optimization
problems. Some global convergence results of nonlinear programming
algorithms can be also extended from convex programs to problems
involving certain generalized convex functions. For a review of
generalized convexity and its application to mathematical programming
see [4, 16, 20, 22, 23]. 1In this work we shall investigate twice

continuously differentiable pseudoconvex functions.

Definition 1. A real differentiable function f, defined on an open

n

convex subset C of R° 1is called pseudoconvex (pex) if

(x' - T Orx) > 0= £x") . £ix) (1.1)

for all x € C, x' € C. 1t is called strictly pseudoconvex (strict;x

(x* - T ve(x) _ 0 2£x') > £lx) (1.2)

forall x€C, x'€C, x £ x'.

Pex and strictly pex functions generalize convex and strictly
convex functions, respectively. It is well known (4] that every local
minimumm of a pex function is global and the Kuhn-Tucker necessary

conditions are also sufficient for a local (global) minimum in a
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nonlinear program whose objective function is pex and the constreints
are defined by quasiconvex functions. Furthermore, if the objective
function is strictly pex, there exists at most one global minimum.
Global convergence to a minimum by certain numerical algorithms,
such as the conjugate gradient method, is ensured in case of pcx
functions.

Characterizations of twice differentiable pseudoconvex functions

f, in terms of extended Hessians, defined by

Hix; r(x)) = Prlx) + r(x) ve(x) vex)T

were studied in [2, 4, 5, 6, 21]. 1In Section 2 of this paper we

relate the criteria used in the characterizations to each other and
derive additional results of this type. A related topic, discussed

in Section 3 is the characterization of pex functions in terms of
bordered determinants. First results in this direction were presented
in [1, 10, 12]. Finally, in Section 4, we focus on quadratic functionms.
A characterization in terms of an extended Hessian [27) is used to
develop a necessary and sufficient condition for (strictly) pex

quadratic functions in terms of bordered determinants.

2. Pseudoconvexity in terms of extended Hessians

Throughout this paper we shall always refer to f as a twice
continuously differentiable real function, defined on an open convex

subset C of Rn. Vectors are considered to be column vectors.
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Accordingly, if x is a vector, its transpose is denoted by xT.

Iet 7 denote the set of normalized direction vectors in Rn, that is

z = {z € Rzl = 1) .
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: Proposition 1. If f is pseudoconvex on C then there exists a ‘

X E:

i P4
i function p : CxZ -» R such that b
§ | £
g . : .
; : 2 [ Prix) + plx,z) VEx) vEx) )z > 0 (2.1) G
" for gll x € C, z € Z.
i ) Proof. First we note that for a pex function f we have zT V2f(x)z >0 3
13
. if z° Vf(x) = 0 (see Lemma 6.2 in [2]). Consider now ;
! 0 if 2've(x) = 0
. .
I - 2. 1 3
f g DO(X,Z) 2t Vr(x)z T (2.2) H
H o i Y if 2vE(x) £0.
§ (2% v£(x)]
) |
% It follows that p=p; satisfies (2.1) as asserted. O 3
i ‘
2 Note that if p is any other function satisfying (2.1), N
, 5’ then
=g

plx,2) > py(x,2)

%

for all x € C, z € Z such that zWwf(x) #.0. Define now
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r(x) = sup(p(x,z) : z € 2} , (2.3)

if ro(x) = sup(po(x,z):z € Z) is finite on C, then there exists

a function r, depending on x, such that
Hix; r(x)) = & ) T
x; r(x)) = Vr(x) + r(x) ve(x) v (x) (2.4)

is positive semidefinite on C, and conversely. Furthermore, f
is r,-convex on C {2, 4, 17, 20] if and only if

ry = sup[ro(x)sx € C)

is finite. For many pcx functions ro is unbounded on C, as in the
case of quadratic functions on maximal sets of pseudoconvexity [27].
Example 1 below demonstrates a case of a pseudoconvex function for
which there exists no finite ro(x) for any x € C. Hence, positive
semidefiniteness of the extended Hessian given by (2.4) is not a
necessary condition for pseudoconvexity, as it was erroneously stated
in [21]. Consequently, the characterization of pcx functions in [6]
applies only to those functions where H(x; r(x)) is positive semi-

definite for some r(x).

Example 1. Let f(x) = xe/xl on C= (x € Rezx1 > 01,

Then f is pcx on C [16). For any x € C and 2 € 2 such that

zl # 0, z2/z1 # x2/xl we have
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po(s2) = 2[(2y/2,) - Gey/x)17H (2.5)

Since p.(x,2) »+w as (z./z.) N (x./x,), it follows that

0 2° 71 2’71
ro(x) = + o, I

The condition stated in Proposition 1 is necessary for pseudo-
convexity. However, 1t is not sufficient, as can be seen in the

following example.

Example 2. et f(x) = (x)j, C = R. Here

0 if x =0

po(x,z) =

x) if x#£0.

[}
W

Clearly, inequality (2.1) holds, but f is not pex. I

We observe that in the last example Py is unbounded on
intervals containing the origin. However, Py is (locally) bounded
on open intervals that do not contain the origin. On those intervals

f happens to be pcx. This example motivates our next result. For

x€C and z € Z, let

T(x,z) = {t € Rex + tz € C) .

Then we have

T e T a7 1 D
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Proposition 2. If there exists a © : CxZ 5 R satisfying (2.1) such

that for every x € C, z € Z and every compact interval I C T(x,2)

the number

‘5 o(I) = sup{p(x + tz,z)st € I) (2.6)
is finjte, then f is pseudoconvex on C.

Proof. Define h(t) = £f(x + tz) for t € I. From (2.1) we have

n"(6) + plx + tz,z) (' (£))% > 0

for t € I. By (2.6) o(I) < +® and it follows that

' (t) + (1) (' (€))% >0

R D Caiotiives

for all t € I. Hence, h is ®(I)-convex (in the sense of r-convexity)
on I which implies psuedoconvexity. Therefore, h 1is pex on T(x,z),
for all x € C and 2z € Z. This implies pseudoconvexity of f on C.

]

T R T o

g | Proposition 2 shows that f is pcx on C if h is (I)-convex 4
?n on all compact intervals I in T(x,z). We shall see in the sequel ;:
E% that this condition is also necessary, provided certain "pathological” ;;
.; functions (an example of which is given below), are excluded. . ;f
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Example 3. Let
Xoh
-0 (&) 2+ sin(1/e)] ae if x<O
0
£x) = ( o if x =0
X ok
[ (&) [2 + sin{2/E)] at if x>0
0

This function is strictly pex on R, To see this, consider

-(x)u [2 + sin(1/x)] if x<0
£ (x) = 0 if x=0
(x)h (2 + sin(1/x)] if x>0

and f'(x) >0 for x>0, £'(0) = 0, and f'(x) < 0 for x

However, by computing the second derivative

-(x)° {bxf2 + sin(1/x)] - cosil/x)} if
' (x) = 0 if

(x)? (4x[2 + sin(1/x)] - cos(1/x)) if

o.

< 0

>0

we can see that f" changes sign in every neighborhood of the origin,

thus f 1is not convex. Take now x = Q0 and =z = 1. Then,

x +tz =%t and for t > 0 we have

e CnlelAL G e ..
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2 + sin(1/t)] - cosil/t)}
[2 + sin(1/t)]°

L
O

T Y (O B
0 t)

(£ (6)1° (t
For k = 1,2,..., let . 1/(2km). Thus

k
(¢5,1) = 288 - (e - 8)0)° ()

fo b (t5)

and oo(tk,l)-a + o as k - o, It follows that the sufficient condition

of Proposition 2 is not necessary for this pex function. H
In the next proposition we restrict the discussion to functions
for which the second order neighborhood sufficient conditions of

optimality [4,13] are also necessary. FPFirst we need

Definition 2. A twice differentiable function h:R - R 1is said to

be regular on an open interval (a,b) if the following statements

are equivalent:

*
(i) h(t) has a local minimum at t € (a,b)

*
(11) n'(t) =0 and h"(t) >0 1in some neighborhood N(t") - (a,b).

The function f£:C - R 1is said to be regular on C if n(t) =f(x+tz)

is regular on T(x,z) for all x < ¢, z¢€ Z,

The function f appearing in Example 3 is not reguler on R,

smaad
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Proposition 3. Let f be regular on C. Then f 1s pseudoconvex

on C if and only if for every x € C, z € 7 and every compact

interval T < T(x,z) there exists a number (T) such that

hit) = £f(x + tz) is o{I)-convex on TI.

Proof. The sufficiency part has been proven in Proposition 2. To

prove necessity, let x € C, z € 2 and consider Lit) = £f(x + tz)

for t € I. Trom Proposition 1 we have that

n"(t) + p,(x + tz,z) ' (t)1%> 0 (2.7)

for t € I, where

¢ if h'(t) =0
po(x + tz,z) = (2.8)
E_:%_§§% if h'(t) o
n' (t

For every t € I such that h'(f£) # 0 there exists a neighborhood

N(£) such that h'(t) £ 0 for t € N(). Thus, polx + tz,2) s

bounded there and can be replaced by some o(t) in N(E) without

violating (2.7).
Every t © I such that h'(t) = 0 is a local minimum, because

h 1is pex. Since h is regular, h'(t) >0 for every t in some

neighborhood N(t). It follows that qo(x + tz,z) can be replaced

by o(E) =0 in N(E) without violating (2.7). Since I is

ot i s
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compact, a finite number of neighborhoods N(ti) associated with

t* = T will cover I. Let ~(I) = sup B(tl) . Then we have
B (t) + o(I) [0 (£)]° >0 (2.9)

for every t < I. i

[ T A S R

As we have already seen, there are pcx functions for which

ro(x) = sup{po(x,z);z € 2) (2.10)

G is not necessarily finite, 1In the following we consider functions for :

which r.(x) is finite for every x € C, The next result follows then

o

from Proposition 2.

Proposition 4. If there exists a continuous function r:C - R such

that H(x;r(x)) is positive semidefinite, then f is pseudoconvex on C.

~l
!
o1
b

It is interesting to relate the preceding results to functions

B

TS g

which are convex transformable, that is, they can be transformed into F
]

——— Ml o e

convex functions by a monotone transformation. The family of G-convex
functions was introduced and studied in (5]. A function f:C - R is
called G-convex if there exists a twice continuously differentiable

; function G:D - R, G'(y) > 0, such that Gf:C >R is convex on C,

where D C R contains the range of f. We have then

'
|
i
!




Proposition 5 [5]. The function f:C —» R is G-convex on C if and

only if there exists a twice continucusly differentiable function

G:D - R, G'(y) >0 such that

Py + G ve(x) ve(x)T (2.11)
G' (£(x))

is positive semidefinite for all x € C,

It immediately follows from Proposition 5 that G-convex functions
satisfy the conditions ¢of Proposition L, <

We introduce now the following notation:

T = family of G-convex functions on C,.
H = family of functions for which a positive semidefinite extended
Hessian H(x3;r(x)) exists at every x I C. C
HC = subfamily of H, with a continuous r on C, <
P = family of pcx functions on C,

In view of Propositions 4 and 5 we have

TOH, P (2.12)

Examples 1 and j illustrate the fact that H_ # P, The following

“‘u‘ ‘
A Y AR

example shows that T # HO, thus generally the inclusions in (2.12)

are strict.

WS BT Sedi e, - -
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Example L., Let C C:R? be an open convex set contained in

M= (el 2 (x)?1F < xy < (= 2 (x21 |

The function

2+ (x)2

f(x) = (x 5

1

PRI TIE RS ICOE ¥ N S SR

is pex on C [23,26], Moreover, f € H, with

. -

() = 212 ()7 + (2?7

i Now assume that there exists a point x on the boundary of C which

is also on the boundary of M, i,e. % (il)§ + (ig)g = 0. Then ro(x)
becomes arbitrarily large approaching X from within C. If f were

convex transformable, then H(x;r(x)) would be positive semidefinite

for some r(x) which is constant, and therefore finite, on {xESC:f(x)==f(;)]

as can be seen from (2.11). However, ro(x) is not finite there.

Therefore, £ ¢ T. I

We may mention here that for quadratic functions the families

T, H, and P are equivalent, that is, T = Hc =P f{27]. {
The following result characterizes T as a subset of Hc' ?j

Proposition 6. f - T if and only if f< H_ and

a(.Y) = sup[r(x);f(x) =y, x €C) 1

is finite for all y 1in the range of f,

12




Proof. If £€ T, then, by Proposition 5, f ¢ H_ with
r(x) = G"(£(x))/G'(f(x)). Hence for all y in the range of f,
aly) 1is finite,
Conversely, let f c H, and suppose a(y) is finite for all
Y in the range of f. Since f and r are continuous, so is aq.

The differential equation

G'{y

has a solution

y n
G(y) =/ exp([ alz)dr) ag
with G'(y) > 0. Hence f € T. 0
From Proposition 6 we immediately obtain

Proposition 7. If f € Hc and

B(y) = sup{r(x):f(x) <y, x£C)

is finite for all y in the range of f, then f € T.

The converse of the last proposition is not true, as can be

seen from

13
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Example 5. Let ?
C=(x€R:x, >0, x. >0)
Xy 7Y Xy
and let
>
(xl)B/
) ==
2

For x€ C, rb(x) = 1/£(x) is the smallest number such that H(x;r(x))

is positive semidefinite. Then Bo(y) = sup{1/f(x):f(x) <y, x € C)} = +w

On the other hand, taking G(y) = y2 we can see that (f(x))2 is

convex on C [2L]. I o
From Proposition 7 we obtain

Proposition 8. If f € H, and the level sets

S(f,y) = {x€¢C, £(x) <y)

are compact for every y € R, then £ <& T, -Q

Compactness of the level sets is, however, not necessary for
functions in Hc to be convex transformable, For example, all nonconvex
pcx quadratic functions have unbounded level sets, but they are convex E
transformable {26,27]. ;

We conclude this section by presenting some related results on { ?3

strictly pex functions. Here we use the following notation:

1L

™




- gubfamily of T, where VQGf(x) is positive definite on C,

L ARy e s .

subfamily of H, where H(x;r(x)) is positive definite on C.
subfamily of HS, where r 1is continuous on C,

= family of strictly pex functions on C.

Then, from Propositions 4 and 5 we have

Although we have seen that Hc # H, we now state and prove

Proposition 9. Using the above notation,

Proof. We have to show that H® ~ H: Let K be a compact set in C
and let x € K. Since f € H°, there exists an ¢ >0 such that

zTVZf(;c)z >0 in 2, ={z € Z; [zT*ff(}-(H < ¢}. Because of continuity of

o - -
Vf and YV f there exists a neighborhood N(x) of x such that for

all x € N(x) we have ZTVEf(x)z >0 in Z, and IzTVf(x){ >ef2>0

1
in Z\ Zl' Let

r(x) > max{O,max[~va2f(x)z/(zTVf(x))2:x € N(x), z2 2 ‘\zl]].

The right-hand side is finite,and we see that zTH(x;r(i))z >0 for

all z < Z, x € N(x). Since K is compact, there exists a finite




number of neighborhoods N(xk), &e K, that cover XK. Thus H(x;r(K))

is positive definite in K for r(K) = sup{r(xk)].

i
i
i
:

Now let {Ki] be a sequence of compact convex sets in R?
such that X, CK;,., 1=1,2,..., and €=U _ K. As we saw before,
there exists a number r(Ki) such that H(x;r(Ki)) is pa itive definite
for ell x € K;. Since K, CTK, ., it can be assumed that: r(Ki) < r(K“;).

‘Since the K, are assumed to be compact convex, it follows that a continuous

i
function r on C can be constructed such that r(x) > r(Kl) at
x€K and r(x)>r(K) at x¢€ Ki\Ki_l for 1= 2,,.. [28).
Since then H(x;r(x)) is positive definite on C, we proved that ~ 3

f € H°.
[

It should be noted thet the inclusions T° CT, H CH_ and

P° CP can be strict, as illustrated below.

Example 6. Let £(x),x,) =1lnx andlet C=(x€ R2:x1 > 0).

Then £E€T, but £ ¢ T5, I

The results of this section can be summarized in the following

gschematic representation: : T

L 1 .

*H:-——;—&P
(o]
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The rmumbers appearing next to the arrows refer to the example numbers
which show that the reverse implications generally do not hold.
Families H and P are not related to each other by inclusion, as

can be seen from Examples 1 and 2.

3, Pseudoconvexity in terms of bordered determinants.

In this section we shall deal with determinants of the bordered

/// 0 Vf(x)T

By(x) =
vf(x) ng(x)

as related to pseudoconvexity. Let Qk be the set consisting of monotone

Hessian of f, given by

increasing sequences of k numbers from (1,...,n}, that is

Qk = {y:iv = (ll}-.-;lk)) ls 1l< *ee < lkin] ‘

Let HY denote the principal minor of order k of the n x n Hessian

>k

ng, formed by the il,...,ik rows and columns of Vef. The leading

principal minors of vzf are denoted by Hk’ k=1, ..., n. We associate

with B the principal minor

and H
Y,

f k
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Similarly, Dk will denote the leading principal minor of order k+l1

of Bf. We shall refer to DY X and Dk as bordered determinants.
2

Characterizations of the families of functions introduced in the

previous section in terms of bordered determinants will be presented now,

First we need

Proposition 10, Let A be & real k x k matrix and let b€ Rk.

Then, for any real number r we have

0 br

det(A + rbbT) = det A - r det (3.1)
b A

Proof. Suppose that r # 0. Then, for Schur's formula [14] we obtain

Ll T
T 1 T
det = - £ det(A + rbb7) (3.2)
b A

It is easy to show that

18
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LT 5 bt
d 1
det = - det A+ det (3.3)
b A b A

and (3.1) follows from equating the right-hand sides of (3.2) and

(3.3). )

We can state and prove now

Proposition 11, A function f Dbelongs to ﬁgg family H if and only if

o (x) = 2(x) D (x) >0 (3.4)

2

for all x<€ C and 7y € Qk, k=1,...,n.

Proof., The family H consists of all functions f for which a positive
semidefinite H(xj;r(x)) exists at every x € C. Since a square matrix
is positive semidefinite if and only if &ll its principal minors are

nonnegative, the proof follows from Proposition 10, 0
We also have

Proposition 12. A function f belongs to H if and only if D K(x) <0
2

and if D x(¥) =0 then HY’k(x) >0 forall x€C and v Q,

s

k=1,...,0.

Proof. Replace r(x) in (3,4) by any arbitrarily large Tr(x). D

19
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A square matrix is positive definite if and only if all its
leading principal minors are positive. Consequently, we ha e the

following analogous result to Proposition 12,

Proposition 13. A function f belongs to H° if and only if D, (x) <0

and if Dk(x) = 0, then Hk(x) >0 forall x€C and k = 1,...,n.

We have seen in the previous section that Hc (and not H)
consigsts of pex functions only. Let us state and prove now a sufficient
condition in terms of bordered determinants for a function to belong to «

Y

Hc’ and thus to be pcx.

Proposition 14, Suppose that DY (x) <0 forall xS C and 71 € Qk’
s

k
X) =0, then H _(x) >0 for all x in
— k=" ==

k=1,,..,n and if DY,k(

some neighborhood Nr,k(x) of x, Then fC Hc’ and thus f is pseudo-

convex on C, ~d

Proof. By Proposition 12, we only have to show that a continuous r can
be found such that H{xyr(x)) is positive semidefinite. As shown in f
) the proof of Proposition 9, it suffices to prove that for all compact 4

sets K in C there exists a number r(K) such that H(x;r(K)) is

i -

positive semidefinite for x ¢ K. Let, therefore, K. C be compact ff

and let X < K.

s,

| <3

¥

:j If DY k(x) < 0, then DY k(x).

s

k(x) < 0 in some neighborhood NY
2

)

(x X C N X ' .

s

rr’k(i) = sup( (Hr,k(X)—l) /Dr

’

- » > S X
Then Hr,k(X) rY’k(x) Dr,k(x) >1>0 for x*© Nr,k(x)'

20
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’ If D x) = 0, then H x) > 0 1in some neighborhood N
£ r,k() , r,k()— me neig od N

(&)

>

by assumption., Thus

.‘ H . (x) - rY’k()-c) Dr,k(x) ZHr,k(x) >0

for x < Nr,k(x>’ where Tk

Let N(X) = N N_,(x) and r(x) =max r _(x). Thus for each x € K
v,k Yk v,k T,k

there exists a neighborhood N(x) and a number r(x) such that

Hr,k(x) - r(x) DY k(x) >0 for all x € N(x) and v € Qo k=1...,n

In view of Proposition 11, H(x;r(x)) is positive semidefinite in N(x). .

4 L3

Since the compact set K 1is covered by finitely many neighborhoods
N(xk} of points xk € K, there exists a number r(K) such that

H(x;r(K)) is positive semidefinite on K. a

Ferland [10,12], extending previous results of Arrow and Enthoven

[1], has considered the following families of functions:
1:
g D_ = family of functions for which Dk(x) <0 for all x€ C and
;
aé k=1,...,n,
D, = family of functions for which D (x) <O Zor all x € C and 7
i = .
"4 k= l,..c’no i .
1 Using this notation, Ferland proved that 3
- — -’é
D CPCD_. (3.5)

| : Let us introduce now two additional families.
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then Hk(x) >0 forall x€C andk =1,...,n.

[
"

r€Q, k=1,...,n and if DY’k(i) = 0, then HY k(x) >0 for

3

all x in some neighborhood NY k(i) of x.
)

In Proposition 13 we proved that p° = H

Proposition 15.

Note that the first inequality in (3.5), that is, D, =P follows from

(3.6), since by Proposition 14, D © P. Also, since HS <P

Section 2), the first inclusion in (3.6) shows that D< covers only
strictly pcx functions. Let us show now that the inclusion D< - D

can be strict, that is, there are strictly pex functions in D% which

do not belong to D<.

2

[}
= “ )
Example 7. Let f(xl,xg) ln[(xl) + (xg, ] and

C=(x¢€ R2:x2 > 0]. For this function

Dy(x) = - A

If Dl(i) = 0, then

family of functions for which Dk(x) < 0, and if Dk(x) = 0,

family of functions for which DY k(x) <0 forall x€C and
2

and H> - D. Hence, we have

e O

e
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A (%)%« 2(x)°
Hl(x) = l ? - et 2

G2+ 5P (&

which is positive. Furthermore,

DQ(X)=- 8 =~ <0 .

[(x)% + (x,)%]

Hence, £ € D° but f ¢ D_. I

Since the inclusion D° ©' D is strict as we have shown in
Example €, Proposition 14 presents a stronger condition than that
derived from Proposition 13; Proposition 1L also covers pex
functions which are not strictly pex.

Proposition 13 and Proposition 14 yield the strongest sufficient
conditions in terms of bordered determinants for strict pseudoconvexity
and pseudoconvexity, respectively, known so far. From Proposition 12

w. can see that H 7. D< and by (35.5) we have F ._ D<. Both inclusions

are strict as can be seen below,

2
. Then

If
=

)
Example 8 {10]. Let f(xl,xg) = -(xl + x2) and C

1

£fcb

s but £ ¢ P and f ¢ H, since along the line X, *+ X, =0 the

extended Hessian of f 1is not positive semidefinite. H

We now complete the schematic representation of the relations

between the various families mentioned above as follows:
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The families T° and D< are not related to each other as can be seen
from Examples 4 and 7, We could not find an example showing that the

inclusior D« Hc is strict. Finallx,we may remark that the sign test
of the leading principal minors of an extended or bordered Hessian can

be conveniently performed by a procedure suggested by Cottle [7].

4, Pseudoconvexity of guadratic functions.

In this section we focus attention on guadratic functions of
the form

q(x) = xTox + alx (k1)

on an open ~onvex set C C,Rn. Characterizations of pcx quadratic

functions were derived in [A-11, 18, 19, 23, 25-27]. 1In [23,2¢] it was
shown that pecx quadratic functions are G-convex., Using this result,

a characterization in terms of H(x;r(x)) was presented in {27],
generalizing e result in [21], Restricting the families introduced in
the previous sections to families of quadratic functions it was shown in

(27] that

e ek kA LA A s
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- pY. (4.1)

Let us characterize now pex quadratic functions in terms of bordered

determinants. We have

Proposition 1l&, A guadratic function g is pseudoconvex on C if and

only if DT,k(x) <0, and if Dr’k(x) = 0, then Hy,k(x) >0 for all

x< C and y <€ Qk’ k=1,...,n,

The proof of this proposition follows from the fact that H = P

for quadratic functions and trom Proposition 12, Since the HY x are
2’

constant for q, Proposition 1¢ shows that D = P.

For strictly pex functions we have .seen in Proposition 13 that

S s S

D° = H°., Since E° =P for guadratic functions, we have

Propositi-n 17. A quadratic function q 1is strictly pseudoconvex on C

if and only if D, (x} <0, and if D (x) =0, then ¥ (x) >0 for all

x=C and k =1,...,n0.

The relationship between families of pex quadratic functions

can be represented by the following schematic diagram:

st

haicm . MR i Atk -
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The next two examples respectively demonstrate that the inclusions

DS‘: D and D< S can be strict.
e ]
Example 9. Let q(xl,ng - -(xl) and C = {x < R Xy > 0l.

It is easy to verify that gq > D. But H_K(x“ <0 for all x < C and
k = 1,2. Hence q 7 D°. I

) .

Example 10, Let q(xl,xﬁﬁ - (Xl)“ Fx, and C = R".

= - TI— IS X = X =
Dl(x)- h(xl,, D2(x 2 <0, If Dl(x) 0, then Hl(x) 2 > 0.

Hence q ¢/ D, and q < DS, I

In conclusion, the families D and D® respectively characterize

pex and strictly pex quadratic functions in terms of bordered determinants,
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